15^2=x(x+12)

Simple and best practice solution for 15^2=x(x+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15^2=x(x+12) equation:



15^2=x(x+12)
We move all terms to the left:
15^2-(x(x+12))=0
We add all the numbers together, and all the variables
-(x(x+12))+225=0
We calculate terms in parentheses: -(x(x+12)), so:
x(x+12)
We multiply parentheses
x^2+12x
Back to the equation:
-(x^2+12x)
We get rid of parentheses
-x^2-12x+225=0
We add all the numbers together, and all the variables
-1x^2-12x+225=0
a = -1; b = -12; c = +225;
Δ = b2-4ac
Δ = -122-4·(-1)·225
Δ = 1044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1044}=\sqrt{36*29}=\sqrt{36}*\sqrt{29}=6\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{29}}{2*-1}=\frac{12-6\sqrt{29}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{29}}{2*-1}=\frac{12+6\sqrt{29}}{-2} $

See similar equations:

| 4(x-1)=5x-11 | | 10z^2-13z-3=0 | | x÷5-x÷3=2 | | 11m-10m=14 | | 3/8x+3=1/2x+5/2+1/4 | | 9h+4h+h-4h+2=12 | | 2w=10w | | h+5/15=11/14 | | 7z+z-7z+1=18 | | 64^x=128 | | -67=6x- | | 19u-18u=14 | | 12a-9a-a=14 | | 15x-5x-9=11 | | 9r-2r+3r+3=13 | | 19k-14k-2k=18 | | 8d-6d+3d-3d+d=12 | | 17y-y^2=16 | | 2x+6x-4x=20 | | 16d+3d-2d-14d=9 | | 12x+48=3x+57 | | 11d-5d-2d+d+3d=8 | | 6x²-20x+6=0 | | -6/5k=1 | | (k+10)(3K)=90 | | a-2=2a-22 | | K+10+3k=90 | | 17m-10m-3m-2=10 | | (19)x+(18)=-19x+18 | | (11x-33)/(x-3)=x | | (-19)x+(18)=-19x+18 | | 2s+14=8s-58 |

Equations solver categories